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INTRODUCTION

Designing aerial vehicles moving at high supersonic speeds is closely related to the computation of their
dynamic and thermal interaction with surrounding air. The experimental investigation of aerodynamic
characteristics of aerial vehicles runs into significant technical difficulties and not all airf low regimes can
be examined experimentally. To save time and money, it is reasonable to investigate the main thermody-
namic and fluid dynamic characteristic using computational f luid dynamics. An important practical task
is to create universal software implementing numerical methods for solving models of nonequilibrium
chemically active gas. Currently, a number of research teams in Russia are developing universal software
packages for simulating the aerodynamics of compressible f luid [1–4]. Among the codes designed for
high-speed flows, we mention [5–7].

Currently, the laboratory of mathematical modeling of nonlinear processes in gaseous media of the
Moscow Institute of Physics and Technology (Russia) is developing numerical methods and the software
package called FlowModellium for simulating external high-speed flows of compressible f luid in a wide
range of parameters of the incident f low. The package consists of a mesh generator [8], a modular solver
of equations of motion of compressible f luid that takes into account various physical properties of the
medium [9], an a visualization module. The use of this software will make it possible to create a simulation
environment that includes all phases of solving applied problems—creating a geometric model of the
object, generation of mesh in the physical space, computation of airf low on a supercomputer, processing
the computation results, and generation of recommendations for developers of aerial vehicles. In this
paper, we review the capabilities of the aerodynamic solver included in FlowModellium. Its distinctive
feature is the support and use of block structured and hybrid unstructured meshes, the use of an implicit
high approximation order scheme on such meshes, and a two-level MPI + OpenMP model of parallel
computations adapted for the use on modern supercomputers.
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1. BASIC EQUATIONS
Consider external f low around a body by compressible f luid. The state of the f luid at the point

) of the physical space at the time  is characterized by its density , velocity ,
pressure , and temperature . We assume that the medium satisfies the perfect gas equation

(1)

where  J/(mole  K) is the gas constant, and  is the molar mass. The energy of unit volume of
the gas mixture is represented in terms of the mass , density, and velocity of the gas by the formula

(2)
In dimensional vector form, the equations are written as

(3)

Here,  is the vector of conservative variables,  and  are the tensors of convective and viscous f lows
with respect to coordinate directions, and  is the source term. The specific form of these vectors depends
on the physical model. A description of the physical models implemented in the package is given below.

1.1. Laminar Models
The simplest model is the model of perfect gas in which the internal energy of the gas mass unit  in

the equation of state (1) is given by

The molar mass  and the specific heat ratio  for air are, respectively,  kg/mole
and . The vectors , , and  are given by

(4)

Here summation is made over repeating Greek subscript indexes. The source term is identical zero: .
For the components of the viscous stress tensor  and heat f lux , we have:

For the perfect f luid, the coefficients of viscosity  and thermal conductivity  are related by the equations

where  is the Prandtl number.
For high speed gas f lows in which the temperature can be high, the perfect gas model is inappropriate,

and chemical reactions in the gas must be taken into account. A simple model for this case is the equilib-
rium chemistry model the use of which requires the assumption that the characteristic times of all reac-
tions are large compared with the mean time of free path of particles and that the reaction rates are much
lower than the rate of reaching the Maxwell equilibrium due to elastic collisions [10]. The computational
equations retain form (4), but the values of the thermodynamic parameters and transport coefficients in
the case of taking into account the equilibrium chemical reactions vary depending on the actual values of
pressure and density. Thus, by choosing the equilibrium chemistry model for solving the problem, we will
actually solve the Euler or Navier–Stokes equations (4) together with the equation of state of the perfect
equilibrium chemically reacting gas–plasma mixture.

= , ,1 2 3(x x xx t ρ = , ,1 2 3( )u u uu
p T

= ρ ,uRp T
M

≈ .8 31uR ⋅ M
e

α α= ρ +( /2).E e u u

∂ + ∇ − = , = , , , = , , .
∂

v v v v v

1 2 3 1 2 3( ) ( ) ( ) ( )
t

U F F S U F F F F F F F F

U F vF
S

e

= , = .
γ − 1

uRRTe R
M

M γ −= ≈ . × 3const 28 98 10M
γ = 7/5 U kF v

kF
⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ α α ⎠

ρ ρ⎛ ⎞
⎜ ⎟ρ ρ + δ τ
⎜ ⎟
ρ ρ + δ τ= , = , =⎜ ⎟
⎜ ⎟ρ ρ + δ τ
⎜ ⎟⎜ ⎟ + τ −⎝ ⎠

v

1 11 1

2 22 2

3 33 3

0

.

( )

k

kk k

k kk k k

k k k

k k k

u
u uu p
u u u p
u u u p

E E p u u q

U F F

≡ 0S
τij kq

⎛ ⎞∂ ∂ ∂τ = μ + − , = −λ⎜ ⎟∂ ∂ ∂⎝ ⎠

2 div .
3

i k
ik k

k i k

u u Tq
x x x

u

μ λ

μ γλ = , = ,
γ −Pr 1

p
p

c Rc

= .Pr 0 75
COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS  Vol. 58  No. 11  2018



FLOWMODELLIUM SOFTWARE PACKAGE 1867

Table 1. Description of implemented multicomponent models

Number of components Composition

5 O, N, O2, N2, NO

7 O, N, O2, N2, NO, NO+, e

9 O, N, O2, N2, NO, NO+, , , e

11 O, N, O2, N2, NO, O+, N+, NO+, , , e

N

+
2O +

2N
+
2O +

2N
The parameters and transport coefficients are computed by linear interpolation using a table that was
preliminary composed based on the working range of pressures 0.01–100 atm and the working range of
temperatures 300–20000 К. The interpolation of tabular data gives the maximal error of about 0.5% for
the transport coefficients and less than 0.01% for the thermodynamic parameters. The table was con-
structed using the program package SoVA (Sokolova, Vasil’evskii, and Andriatis) developed for calculat-
ing the equilibrium composition and transport coefficients for low-temperature plasma in high-order
approximations of the Chapman–Enskog method; this package produces highly accurate tabular data.
The basic conditions under which this table was computed are the chemical equilibrium conditions
(Guldberg–Waage equations) and the Saha ionization equation. The table used in the software described
in the current paper was composed for the 22-component gas–plasma mixture. This table was composed
under the assumption that the incident f low is air. However, it can be extended to take into account other
components (e.g., for the case of ablation) or replaced by another table if the molar concentrations of the
incident f low are different from those characteristic of air.

If the applicability condition of the equilibrium chemical reactions model is not fulfilled, then a non-
equilibrium model must be used. In this paper, we use the one-temperature model based on studies
[11, 12]. We used 5-, 7-, 9-, and 11-component gas models. The composition of the components is pre-
sented in Table 1. The gaseous medium is considered as a perfect quasi-neutral mixture of perfect gases
consisting of  components between which nonequilibrium chemical reactions and ionization proceed.
The molar mass of the mixture  and the internal gas energy  appearing in Eqs. (1) and (2) are deter-
mined by the formulas

(5)

Here  are the mass-molar concentrations of components (  are mass concentrations and  is
the molar mass of the component);  is the enthalpy of the unit mass of the gas mixture; and  and  are
the molar internal energy and enthalpy of the th component, respectively. The thermodynamic and ther-
mochemical data are taken from [13].

For the one-temperature (1TM) model of the gas medium, the vector of conservative variables and the
vector of f luxes have the form

(6)

Here,  are the source terms due to nonequilibrium chemical reactions. The diffusive f luxes  for the
th component and the thermal f lux  are determined by

N
M e

= = =
= γ , = − γ , = γ .∑ ∑ ∑

1 1 1

1
N N N

i u j i i
j j j

e h R T h h
M

γ = /j j jc m jc jm
h je jh

j

⎛ ⎞ ⎛
⎜ ⎟ ⎜
⎜ ⎟ ⎜
⎜ ⎟ ⎜
⎜ ⎟ ⎜
⎜ ⎟ ⎜
⎜ ⎟ ⎜
⎜ ⎟ ⎜
⎜ ⎟ ⎜
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ α α

ργ ω ρ γ⎧ ⎫ ⎧ ⎫
⎪ ⎪ ⎪ ⎪
⎪ ⎪ ⎪ ⎪
ργ ω ρ γ⎪ ⎪ ⎪ ⎪
⎪ ⎪ ⎪ ⎪ρ ρ + δ τ= , = , = , =⎨ ⎬ ⎨ ⎬
⎪ ⎪ ⎪ ⎪ρ ρ + δ τ
⎪ ⎪ ⎪ ⎪

ρ ρ + δ τ⎪ ⎪ ⎪ ⎪
⎪ ⎪ ⎪ ⎪ + τ −⎩ ⎭ ⎩ ⎭

v

� � � �

1 1 1 1

1 1 1

2 22

3 33

K

K
0S
0
0
0 ( )

k k

N N k N Nk

k kk k xk

k k yk

k k zk

k k k

u

u
u uu p
u u u p
u u u p

E E p u u q

U F F

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟⎜ ⎟

⎠

.

ω j jK
j q

=

∂γ ∂= , = −λ + .
∂ ∂ ∑

1

N
j

jk j k jk j
jk k

TK d q K h
x x
COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS  Vol. 58  No. 11  2018



1868 PETROV et al.
To calculate the viscosity and thermal conductivity coefficients of the gas mixture, approximate Wilke–
Vasil’eva formulas [14] are used;  are the ordinary components of the viscous stress tensor.

1.2. RANS Models

To calculate turbulent f lows, we use the Spalart–Allmaras (SA) model to close the RANS equations
[15–17] and the Menter model (k- -SST) [18]. Based on the information about various semi-empirical
models, we claim that these models are most appropriate for external f luid dynamics problems; however,
in some cases one model can have certain advantages over the other.

The Spalart–Allmaras model combines simplicity (only one additional differential equation) with high
potential for taking into account a wide range of turbulent phenomena even in problems with complex
geometry. The vectors , , , and  are given by the formulas (in dimensional form)

(7)

The first five equations are the same as in the perfect gas case. Effectively, the SA model refines the values
of the transport coefficients in Eqs. (4) leaving Eqs. (4) themselves intact (4). We assume that the viscosity
is given by  and the thermal conductivity coefficient is . Here  is the molec-
ular viscosity,  is the turbulent viscosity,  is the molecular thermal conductivity coefficient, and  is
the turbulent thermal conductivity coefficient. The turbulent viscosity is determined by .

There are a lot of modifications of the basic SA model that take better account of the physics of the
phenomenon or improve the stability of computations [19–23]. In this paper, we use the modifica-
tion SA-nonft2. In this modification, the sixth component of the source term has the form

The other terms appearing in the source are given by the formulas

The statement of the boundary value problem assumes that the turbulent viscosity on the wall is zero.
In the incident f low, the turbulent viscosity is chosen from the range 3–5 laminar viscosities at infinity.

The turbulent thermal conductivity is calculated as , where the turbulent Prandtl number
 is equal to 0.85.
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As another model of closure of the RANS equations, we use the two-parameter Menter model. In this
model, the vectors , , , and  have the form

(8)

Here,  is the turbulent energy and  is its dissipation. The system of equations is closed by the equation
of state

Under the Boussinesq hypothesis, the stress tensor components are written as

In turn, the components  in the vector  have the form

and the term  is moved to the convective f low.

In this model, the turbulent viscosity is calculated by the formula

The source terms for the turbulent energy and its dissipation are calculated by
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Here,  is the distance to the body surface. The boundary conditions on the hard wall are written as
(  is the size of the first cell)

For infinitely far boundaries, the following formulas are used:

The turbulent thermal conductivity is calculated as in the Spalart–Allmaras model but with the Prandtl
number .

2. NUMERICAL METHOD
Numerical solution is always constructed in dimensionless variables. The transition to dimensionless

variables is specified by choosing the scales of the coordinate , pressure , density , velocity , tem-
perature , molar mass , and viscosity . By default, the length scale is  m, but it can also be
specified in the program configuration file. In all cases, the scale of the thermal conductivity coefficient
is . To choose the other scales, three variants are possible. For the nonequilibrium model,
the choice of scales is determined by the concrete implementation of the library of chemical reactions:

For the two other variants, the scales of density, temperature, and viscosity are determined by their values
in the incident f low. For the scales of velocity and pressure for high speed incident f lows, we used ,

. If the incident f low velocity is low, then we used , . The equation of state
(1) takes the form . For f lows in which there are chemical reactions, the coefficient  is

recalculated at each point of the space. For the other cases,  is a constant.

In terms of dimensionless variables, Eqs. (3) take the form

(9)

Here the Reynolds number  is formally obtained when we change to the dimensionless variables, and
it can be different from the actual Reynolds number of the problem. The steady-state solution to system (9) is
constructed using the relaxation method and the second-order Godunov’s finite volume scheme.

Let us define a computational mesh consisting of cells  in the space of spatial variables. Each cell can
be tetrahedral, pyramidal, hexahedral, or prismatic, and in can be formed by several triangular or quadri-
lateral faces . The total number of cells is . By integrating system (9) and passing to discrete form,
we obtain

(10)

Here,  is the average value over the cell,  is the convective (inviscid) numerical f lux through the
face ,  is the viscous numerical f lux through the face , and  is the external unit normal to the face .
Note that  on the steady-state solution.
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The computation of the convective numerical f lux  in scheme (10) begins with building a recon-
structing polynomial for each cell . This polynomial approximates the vector  within the cell [24–27].
In the first method, given the average values, the values on the cell faces are constructed using a multidi-
mensional solution reconstruction procedure. To ensure the second order of approximation, a piecewise
linear representation of the distribution function in each spatial cell is built; the coefficients of this repre-
sentation are computed using the least squares method by the values in the cells of the reconstruction sten-
cil. The other method is applicable only to hexahedral cells—it is a locally one-dimensional method of
computing the values of the distribution function on faces borrowed from the reconstruction methods of
structured meshes.

The reconstruction procedure produces two values of the vector of conservative variables on each face
of the spatial cell ; the first value, which is denoted by  below, corresponds to the reconstruction poly-
nomial of the cell . The second value  is obtained when the polynomial from the cell  adjacent to
the face  of the cell  is used. In the general case, these two values are different, and the Riemann problem
on the face naturally arises. A detailed description of methods for finding its exact and approximate solu-
tions using the property of invariance of the convective f lux under rotation of the coordinate system can
be found, e.g., in [28, 29].

Let  be the matrix of rotation of the local system of coordinates to the local system of face . The con-
vective numerical f lux  in scheme (10) has the form (see [29])

(11)

Here, the index of the time step  is omitted for simplicity. The quantity  is the vector of conservative
variables in the system of coordinates oriented perpendicular to the face, the function  is the Riemann
solver, and  is the index of the face of cell  adjacent to the face  of cell . In this paper, we use gen-
eralizations of several Riemann solvers (HLL [30], HLLC [29, 31], Osher’s method [32], and exact solver)
to the case of chemically reacting gas.

Pay attention how the Riemann solver HLLC for the model k- -SST is implemented. In this imple-
mentation, the terms appearing due to the Boussinesq hypothesis are approximated by the upwind for-
mula based on the sign of velocity of the central wave and added to the standard value of HLLC flux for
the perfect gas [33, 34].

It is well known that when Godunov-type capturing schemes are used, the undesirable effect called the
carbuncle phenomenon can occur (e.g., see [35, 37]. In this paper, for the calculation of f lows with the
Mach number of the incident f low  and in order to fight this phenomenon, we use the f lux HLL
on all mesh faces that are father from the body surface than a given distance ; on the other faces the more
accurate three-wave HLLC flux is used. The parameter  must be such that HLLC is used on all faces of
the boundary layer. Typically, if the body size is about 1 m, then  cm.

The approximation of viscous numerical f luxes in the solution of the Navier–Stokes equations requires
the computation of derivatives of macroscopic quantities (first of all, velocity components and tempera-
ture) on cell faces. In the numerical method, we use the direct approximation of the derivatives based on
the values of the solution at the centers of the adjacent cells and at the face vertices. This method was pro-
posed in [38, 39] for tetrahedral meshes with triangular faces. In the package described in this paper, we
generalize this method to quadrilateral faces. The unknown values at the face vertices are found by aver-
aging over the cells adjacent to the face with geometric weights that are inversely proportional to the dis-
tance from the vertex to the cell center.

Our implementation of the implicit version of the numerical method is based on the studies [40–43].
By approximating the time derivative in the semidiscrete scheme (10) by backward differences, we obtain
the following implicit one-step scheme on an arbitrary spatial mesh:
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The linearization with respect to time yields the following value in cell :

(12)

During the numerical f lux linearization, we take into account the dependence of the f lux on the values
 in cell  and in its immediate neighbor  on the face , which corresponds to the upwind spatial first-

order approximation. The numerical f luxes on the left-hand side of scheme (12) are approximated using
the modified Rusanov f lux (see [43])

(13)

Here,  are the eigenvalues of the convective f lux Jacobian matrix, and  is the distance between the cell
centers  and  found by the formula (  are the coordinates of the face center)

(14)

The use of expression (14) instead of the conventional formula  allows us to take into account
kinks of the mesh lines in the computation of airf low around bodies of complex shape.

Upon certain transformations, the implicit scheme (12) takes the final form

(15)

Here,  is the Jacobian matrix of the physical f lux  and  is the rotation matrix of the coordinate system
to the local system of face  of the cell  (e.g., see [29]). The resulting sparse system of linear equations (15) can
be solved by the approximate LU-SGS factorization (see [41–43]). Rewrite the system of equations (15)
in the symbolic form

(16)

The diagonal of the matrix  is occupied by , and all off-diagonal nonzero elements have an order .
We decompose this matrix into diagonal, strictly lower triangular, and strictly upper triangular matrices:

. Instead of system (16), we consider the system

(17)

The matrix of this system is the product of lower triangular, diagonal, and upper triangular matrices.
The quantity  is usually neglected. The simplification  gives an approximate system that
is easily solved using forward and backward elimination. Passing to the version of the method that does
not require the calculation of the Jacobian matrix

we obtain the following two-step algorithm:
1. Backward elimination: .

(18)

2. Forward elimination: .

(19)
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The numerical solution is considered convergent to the steady-state mode when the norm of the right-
hand side vector becomes less than a given small number.

3. SOFTWARE PACKAGE
The numerical methods described above are implemented in the software developed in the laboratory

of mathematical modeling of nonlinear processes in gaseous media of the Institute of Physics and Tech-
nology (Russia) [9]. The programs are written in Fortran 2008 that has some object-oriented features.
During the development, the requirements of portability and compatibility with different operating sys-
tems (Windows 7 and Linux) and capability to run on various computer systems from workstations to
supercomputers were taken into account. To make the implementation portable and compatible, we did
not use solutions depending on the operating system and specific architecture of computer nodes. The
parallel configuration uses MPI for models with distributed memory and OpenMP for models with shared
memory. For the development used the development environment Microsoft Visual Studio 2013 and the
compiler Intel Fortran 16. The package Git was used for version control.

The package consists of the computational core, mesh preprocessor, and main aerodynamic solver.
The computational core consists of a set of modules implementing the basic. The core implements the

procedures of reading spatial meshes in the formats Neutral and StarCD and extracts information about
the mesh connectedness (neighbors of faces, cells, and vertices). To approximate the transport operator,
algorithms for the reconstruction of scalar functions by the least squares method on an arbitrary mesh (up
to the fifth approximation order, inclusive) and algorithms of nonlinear limitation of solution of the type
total variation diminishing (TVD). To perform parallel computations using MPI, additional data struc-
tures are created and algorithms for the concurrent input–output of the solution to a restart file based on
MPI I/O procedures are implemented. The core also includes procedures for the output of spatial and sur-
face data in the Tecplot format.

To solve problems with a large number of computational cells, the package implements a two-level
model of parallel computations that has been intensively developed in recent years as applied to f luid
dynamics computations [2, 44–46]. In the single-level model, the number of MPI processes  equals
the number of physical cores . In the two-level model, the number of MPI processes equals the num-
ber of employed nodes or processors. In other words, one or two MPI processes and a given number of
OpenMP threads  are run on each node. As before, the MPI interface is used to
exchange data between processors or nodes of the supercomputer.

On the upper level (MPI data exchanges), the spatial mesh is decomposed into blocks with certain
overlapping taking into account the difference scheme stencil. The preprocessor included in the package
is used to create such blocks. The cells of the original single-block unstructured mesh are distributed
among processors using the program Metis [47] or the decomposition module described in [48]. Using
this decomposition, the preprocessor distributes the mesh cells among processors, renumbers all mesh
elements (nodes, faces, and cells), ensures overlapping of blocks needed for the computations, and creates
lists of cells for exchanging data between all processors. All the required data is written in blocks so that
each thread in the course of parallel computations reads only the part of the mesh assigned to it.

On the lower level within a cluster node, OpenMP is used. At the initialization of computations, the
part of the spatial mesh corresponding to an MPI process is decomposed into  nonoverlapping
blocks. For the difference scheme used in the computations, which stores data in the nodes, there is no
data conflict; therefore, the use of a complex two-level decomposition of the computation domain of
physical variables proposed in [4, 45] does not decrease the computation time. To compute the numerical
f luxes and source, the simple parallel do with a dynamic scheduler is used. The size of dynamically dis-
tributed tasks (chunks) was a quarter of the loop size divided by the number of threads. In the backward (18)
and forward (19) steps of the LU–SGS algorithm, each thread examines only the cells within its block;
therefore, the acceleration of this part of the method is limited only by the RAM access speed.

Strictly speaking, the sequential version of the algorithm cannot be directly parallelized because the
blocks of the computational mesh overlap. On the whole, each thread performs computations in its part
of the spatial mesh; for ghost cells, the Jacobi approximation (see [49]) is used:

(20)

If good quality meshes are used, the rate of convergence to the steady-state solution does not decrease.
For poor meshes or when the computations are performed on systems with a large number of cores per

mpiN
coreN

=omp core mpi/N N N

ompN

Δ = / .i i iU R D
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Fig. 1. Comparison of computed (lines) and tabular (open dots, book [54]) values of dimensionless gas density and veloc-
ity along the sphere surface depending on the angle  counted from the stagnation point.
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node (e.g., based on Intel Xeon Phi), a more reliable modification of LU-SGS based on the recursive
decomposition of the computation domain can be used (see [50]).

The use of the two-level model OpenMP + MPI makes it possible to improve the efficiency of com-
putations on systems with a large number of cores per node because the number of MPI processes is
reduced by a factor of . However, the use of OpenMP within a node has certain specific features and
involves some difficulties (e.g., see the discussion in [45]). The optimal combination of the number of
MPI processes  and OpenMP threads  depends on the size of problem to be solved and on the
number of used processors.

4. EXAMPLES OF COMPUTATIONS
In this section, we describe the results illustrating the scalability of the software package on high per-

formance computers and verification results. In all computations, we used the implicit second-order TVD
scheme together with the Riemann solver HLLC or a combination of HLL and HLLC. The major part of
computations were performed on the cluster of the laboratory of mathematical modeling of nonlinear pro-
cesses in gaseous media of the Institute of Physics and Technology and on the system Lomonosov-2
installed in the Research Computer Center of Moscow State University [51, 52] in the framework of the
program, Supercomputer Potential of the Russian Industry (http://superprom.hpc-russia.ru). The code
scalability was tested on RSK systems PetaStream [53] installed in the Joint Supercomputer Center
(JSCC) of the Russian Academy of Sciences, Peter the Great St. Petersburg Polytechnic University.

4.1. Problems with Simple Geometry
Gas flow around a sphere is a classical benchmark problem. Since we are not interested in the reverse

flow behind the body, in our computations we used a model geometry consisting of a half-sphere joint to
a cylinder of the same radius.

The first series of computations was performed for the perfect inviscid gas model. In each computation,
the geometry was f lown around by a 22-component inviscid air. The computation results were compared
with the tabular data presented in [54]. A mesh consisting of 500 thousand cells without the boundary
layer and the second-order scheme were used. Figure 1 shows the plots of the mixture density and velocity
on the along the sphere surface at the altitude of 20 km compared with the tabular data (open dots). The
parameters of the incident f low were as follows: pressure 5526.87 Pa, density 0.0887 kg/m , and velocity
5901.4 m/s (the Mach number 20). The computation results and the tabular data are very close, which

ompN

mpiN ompN

3
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Fig. 2. Comparison of the dimensionless density , pressure , and temperature  on the stagnation line. The
data for comparison was obtained using the axisymmetric computations by the HighTemp code [11].
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Fig. 3. Comparison of the mass fractions of O, N, and NO on the stagnation line. The data for comparison was obtained
using the axisymmetric computations by the HighTemp code [11].
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indicates that the implementation of the chosen model is correct. The relative error of density and pressure
compared with the tabular data along the sphere surface and on the diff luence line does not exceed 2%.
In the vicinity of the stagnation point, the relative error is less than 1%.

In the second series of computations, we considered the f low based on the five component model. The
sphere radius was 0.66 cm, and the parameters of the incident f low were as follows: pressure density
0.0645 kg/m  and velocity 5022.4 m/s. It was assumed that in the incident f low , ,
and the mass fractions of O, N, and NO were zero. The temperature of the sphere surface was  K, and
the surface was assumed to be non-catalytic ( ). The corresponding Mach number of the inci-
dent f low was . The surface geometry was described by five blocks with the configuration of
the type O-mesh; in the center (on the symmetry axis), the square block was used. Thus, the computa-
tional mesh was not axisymmetric. The Courant number was 100. Our results were compared with the
axisymmetric computations provided by the HighTemp code [11] on a very fine mesh. Note that the com-
putation domain in the axisymmetric solution was an angle of size 70 degrees. Figures 2 and 3 compare
the basic computed quantities on the stagnation line. The results are in excellent agreement. On the whole,
the typical f low pattern with a bow shock wave and a boundary layer is observed. The gas heating on the
shock wave front initiate chemical reactions as a result of which the nitrogen and oxygen molecules disin-

3 = .2 0 232Oc = .2 0 768Nc
= 550wT

∂ ∂ =/ 0kc n
∞ = .16 89M
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Fig. 4. Comparison of the numerical density of electrons in the perpendicular direction to the body surface at the point
 in the computations of RAM-C airf low. 
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Fig. 5. Distribution of the drag coefficient  on the plate; comparison of results obtained by FlowModellium and
CFL3D. The SA model is on the left and, k- -SST model is on the right.
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tegrate, atomic N and O, as well as NO are formed. In the boundary layer, the temperature dramatically
decreases to the given surface temperature, as a result of which the mass concentrations of molecular
nitrogen and oxygen are restored. Note that the 3D computation reproduces such fine f low details as non-
monotonicity of temperature and  profiles on the shock wave front.

In the next series of computations we considered the laminar f low around a cone with the half-aperture
of 9 degrees, the radius of spherical bluntness  m, and the parameters of the incident f low

 К,  m/s, and surface temperature  К. The 3D computational mesh con-
sisted of about 600 thousand hexahedra with the step in the direction perpendicular to the surface

 m. The model 1TM with seven components and the boundary condition of the completely cat-
alytic surface was used. Under this condition, ,  = 0.76544 on the wall, and the mass frac-
tions of the components were zero. Figure 4 compares our data with the computed and experimental data
presented in [55]. The numerical densities of electrons depending on the distance to the surface for the
point  are compared. It is seen that our data are in good agreement with the experimental data.

Now we test the implementation of the turbulence model.
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Fig. 6. Distribution of the drag coefficient  on the wing airfoil NACA0012; comparison of results obtained by
FlowModellium and CFL3D. The SA model is on the left and, k- -SST model is on the right.
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Fig. 7. Computational scheme for the model DLR F6: (a) surface mesh; (b) cut of the mesh near the fuselage.

(а) (b)
As test cases, we used two classical benchmarks—flow around a plate and NACA0012 airfoil presented
on the site http://turbmodels.larc.nasa.gov. The computation of the f low around a plate is the classical
test for validating different models. 2D Zero Pressure Gradient Flat Plate is the subsonic f low of com-
pressible perfect gas ( , , adiabatic wall) around a f lat plate. The results of computa-
tions within the models SA and k- -SST obtained by FlowModellium are compared with the results
obtained by the package CFL3D. The computations were performed on a hexahedral mesh refining in the
vicinity of the plate (the minimal step is ). Figure 5 plots the drag coefficient obtained by
FlowModellium and by CFL3D (the data is taken from the NASA site). The difference in the results is
less than one percent.

The next test is the f low around the NACA0012 airfoil. 2D NACA 0012 Airfoil Validation Case is the
flow of compressible perfect gas with a zero angle of attack ( , , adiabatic surface)
around the airfoil. Again, the results of computations within the models SA and k- -SST obtained by
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Fig. 8. Distribution of the pressure coefficient over the chord of the DLR F6 profile. The solid line corresponds to the
computation within the model k- -SST, the dashed line to the Spalart–Allmaras model, and dots correspond to the
experimental data. 
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FlowModellium are compared with the results obtained by CFL3D. The computations were performed
on a hexahedral mesh refining in the vicinity of the airfoil (the minimal step is ). Figure 6 plots
the drag coefficient obtained by FlowModellium and by CFL3D (the data is taken from the NASA site).

4.2. Problems with Complex Geometry
In this section, we consider examples of the computation of airf low around a 3D body of complex

shape for various f light modes.

−= × 75 10y
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Table 2. List of experimental points from [58]

Point , kg/m Angle of attack , m/s , Pa
 per meter

of length

Run3064 3.721E–02 28.18 1467 5.894E+02 9.85 0.152015E+08
Run3079 3.955E–02 –0.08 1431 5.837E+02 9.96 0.119638E+08
Run3072 0.379 28 1370 8351 7.8 0.102851E+09

∞ρ 3 α ∞U ∞p ∞M
Re
The first example is the computation of airf low around the model DLR-F6, which is the assembly of
the fuselage and wing of a passenger aircraft. The computation results are compared with the experimental
data presented at the 2nd AIAA CFD Drag Prediction Workshop [56]. The geometric parameters of
DLR-F6 are as follows: the mean aerodynamic chord is САХ = 0.1412 m, the wing semispan is 0.5877 m,
and the fuselage length is 1.192 m. The f low for ,  at the angle of attack 
was considered. The following undisturbed flow deceleration parameters were used in the computations:

 Pa and  K. The structured hexahedral mesh consisting of 4 million cells
(Fig. 7) was used for the computations.

Figure 8 presents the diagrams of the pressure coefficient  compared with the experiment. Data for
six wing sections y = 0.08785, 0.13987, 0.22156, 0.24037, 0.30090, and 0.49602 are shown. Note that all
test results are in god agreement with the results obtained using the package EWT-TsAGI [57].

As the second example, we consider the f low around the shuttle Orion that is under development in
the USA. In [58], experimental data for the model on the scale 1:28 for the Mach numbers of the incident
flow 8 and 10 are presented. This data can be used for testing computer codes. The model is a segmental-
conical body (inverse cone with a spherical bluntness). A hexahedral mesh consisting of 3 million cells
constructed for a half of the geometry was used for the computations. The list of f low models for which
the computations were performed is shown in Table 2. The body surface temperature was  K in
all cases. The first two flow modes are laminar, and the third mode is turbulent. Note that the f low param-
eters at infinity were time-dependent, and a mean value was chosen for the computations.

Figure 9 compares the distribution of the normalized heat f lux

(21)

where  is the Stanton number and  is the Reynolds number calculated using the model diameter
measured across the front cover for the chosen laminar modes. We see that the results are in good agree-
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Fig. 9. Distribution of the normalized heat f lux  (see Eq. (21)) over the front cover of Orion; comparison with the exper-
imental data provided by NASA [58] for laminar modes.
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Fig. 10. Distribution of the normalized heat f lux  (see Eq. (21)) over the front cover of Orion; comparison with the
experimental data provided by NASA [58] for the turbulent f low mode Run3072.
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Fig. 11. Pressure and streamline level lines for the mode Run3064.

75
8

99
2

11

12103
103
103

99
13

14

2
74

1010 8
10 8

2

12
5

744

22

3 1

1

2

5

2
1 62
1 6

9

8
5

3

2

9

7
6

4

1

5

13

8

1
4

6712

13

11
10

Y

XZZ

14

11
10 50000

45000
8 40000
7 35000
6
5

20000
3 15000
2 10000
1

LevelLevel prespres
7000070000

1313 6500065000
1212 6000060000

5500055000

9

3000030000
2500025000

4

50005000

Level pres
70000

13 65000
12 60000

55000

9

30000
25000

4

5000
ment: the accuracy of our results is comparable with the accuracy of the code Laura developed in NASA.
Note that in [58] the mesh adapted to the front of the shock wave was used, while we used the same basic
mesh for all angles of attack. Figure 10 illustrates the results of computations of f low around a model of
Orion based on the RANS Spalart–Allmaras model for the turbulent mode Run3072. In the case of lam-
inar f low at nonzero angles of attack, the heat f lux goes from the lower edge of the front shield of the model
to its upper edge; in the case of turbulent f low, the turbulent f low dependence curve is nonmonotonic:
rapid decrease in the lower part of the shield gives place to increase and then the curve becomes f lat. The
deviation from the experimental data is 10–15%, which is approximately the same error as is given by the
Laura code. Note a fairly strong sensitivity of the results to the choice of concrete values of the f low
parameters at infinity from the table of experimental data. The f low pattern for the mode Run3064 is illus-
trated in Fig. 11. We clearly see the bow shock wave and an intricate pattern of streamlines behind
the body.
COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS  Vol. 58  No. 11  2018



FLOWMODELLIUM SOFTWARE PACKAGE 1881

Fig. 12. Details of the computational mesh for computing the f low around the Federation spacecraft.

(a) Back view Front view(b)

Fig. 13. Flow pattern (pressure level lines) obtained in the computation of airf low around the Federation spacecraft for
the altitude of 60 km, , and the angle of attack  = 25, model 1TM.

XZZZ

Y

∞ = 35M α
Finally, we discuss the computation of f low around the prospective spacecraft called Federation devel-
oped to replace the Soyuz spacecraft [59]. The geometry of this spacecraft is a complex segmental-conical
body with a rectangular cut on the upper part of the surface. In the computations, we used a hexahedral
mesh consisting of six million cells. The mesh details are shown in Fig. 12. The program package was
tested for the f low computation at the altitudes between 50 and 80 km at Mach numbers of the incident
flow up to 40.
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Fig. 14. Flow pattern (streamlines) obtained in the computation of airf low around the Federation spacecraft for the
altitude of 60 km, , and the angle of attack  = 25, model 1TM.

XZ

Y

∞ = 35M α

Fig. 15. Code scalability obtained using OpenMP on a single cluster node (two 12-core Intel Xeon E5-2697v2 processors). 
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Figures 13 and 14 show the field of pressure and streamlines for the altitude 60 km, , and the
angle of attack 25 degrees. The computation was based on the model 1TM (five-component nonequilib-
rium chemistry). In the results, the bow shock wave and the reverse f low zone behind the body are well
resolved. A kink on the level lines in the lower part of the wave front is explained by the nonsmoothness
of the computation mesh in this part of the f low. However, this does not affect the main characteristics of
the f low, such as the distribution of heat f lux over the body surface.

4.3. Scalability Tests

Figure 15 illustrates the scalability of code within one node of the laboratory cluster consisting of
two12-core Intel Xeon E5-2697v2 processors when using the OpenMP technology for various physical
models of viscous gas. The computations were performed on a mesh consisting of 600 thousand hexahedra
using the second-order implicit TVD scheme. For the perfect gas model, the acceleration is by a factor
of 14, and for the model 1TM with eleven components the acceleration is by a factor of almost 20. The

∞ = 35M
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Fig. 16. Code scalability on the cluster Politeknik RSK PetaStream in the Peter the Great St. Petersburg Polytechnic Uni-
versity with the use of up to 256 Intel Xeon Phi 5120D coprocessors. 
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better scalability of code for the model 1TM is due to a large number of computations needed to find the
numerical f luxes, which compensates for the time needed to read data from the node memory.

Figure 16 illustrates the results of scalability testing on the computer system Politechnik–RSK
PetaStream [53] in the Peter the Great St. Petersburg Polytechnic University. Each cluster node consists
of a single coprocessor Intel Xeon Phi 5120D (61 physical cores, 244 hyperthreads). The airf low around
the descent module of the Federation spacecraft was computed on a spatial mesh consisting of 6 millions
of cells. For the perfect gas model, acceleration by a factor of 5.22 was achieved when using 128 nodes
instead of 16 (the efficiency is 65%). As the number of nodes increases further, the acceleration curve
becomes f lat. For the model 1TM (single-temperature nonequilibrium chemistry), the acceleration by a
factor 11.6 when using 256 nodes instead of 16 (the efficiency is 74%).

These results demonstrate excellent scalability of the parallel code described above.

CONCLUSIONS
The software package FlowModellium developed in the laboratory of mathematical modeling of non-

linear processes in gaseous media of the Institute of Physics and Technology (Russia) is described. The
results demonstrate good parallel scalability of the software, its robustness, and applicability to computing
airf low around bodies of complex shape on modern supercomputers.
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